如何在 Tensorflow 中检测图像中的对象位置

How to detect object position in image in Tensorflow

我是 Tensorflow 的新手,正在查看样本对象检测代码。其中之一是 that

我只是不知道如何获取此示例代码中检测到的数组在图像中的确切坐标(位置)。

谢谢

# Run the model
    out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
                    sess.graph.get_tensor_by_name('detection_scores:0'),
                    sess.graph.get_tensor_by_name('detection_boxes:0'),
                    sess.graph.get_tensor_by_name('detection_classes:0')],
                   feed_dict={'image_tensor:0': inp.reshape(1, inp.shape[0], inp.shape[1], 3)})

     # Visualize detected bounding boxes.
    num_detections = int(out[0][0])
    for i in range(num_detections):
        classId = int(out[3][0][i])
        score = float(out[1][0][i])
        bbox = [float(v) for v in out[2][0][i]]

准确答案: 在TensorFlow对象检测API教程中获取边界框坐标

在此之后:

out = vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=1,
min_score_thresh=0.80)

职位是:

im_height, im_width = image.shape[:2]

position = boxes[0][0]

(xmin, xmax, ymin, ymax) = (position[1]*im_width, position[3]*im_width, position[0]*im_height, position[2]*im_height)

roi = image2[int(ymin):int(ymax), int(xmin):int(xmax)]

谢谢rootkitchao